Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Dev Orig Health Dis ; 11(5): 521-532, 2020 10.
Article En | MEDLINE | ID: mdl-32631472

The Developmental Origins of Health and Disease (DOHaD) states that intrauterine maternal environment influences postnatal life by programming offspring's metabolism. Intrauterine milieu induced by exercise during pregnancy promotes long-lasting benefits to the offspring's health and seems to offer some resistance against chronic diseases in adult life. Alzheimer's disease is a public health concern with limited treatment options. In the present study, we assessed the potential of maternal exercise during pregnancy in long-term programming of young adult male rat offspring's cerebellar metabolism in conferring neuroprotection against amyloid-ß (Aß) neurotoxicity. Female Wistar rats were submitted to a swimming protocol 1 week prior mating and throughout pregnancy (five sessions/a week lasting 30 min). Aß oligomers were infused bilaterally in the brain ventricles of 60-day-old male offspring. Fourteen days after surgery, we measured parameters related to redox state, mitochondrial function, and the immunocontent of proteins related to synaptic function. We found that maternal exercise during pregnancy attenuated several parameters in the offspring's male rat cerebellum, such as the reactive species rise, the increase of inducible nitric oxide synthase immunocontent and tau phosphorylation induced by Aß oligomers, increased mitochondrial fission indicated by dynamin-related protein 1 (DRP1), and protein oxidation identified by carbonylation. Strikingly, we find that maternal exercise promotes changes in the rat offspring's cerebellum that are still evident in young adult life. These favorable neurochemical changes in offspring's cerebellum induced by maternal exercise may contribute to a protective phenotype against Aß-induced neurotoxicity in young adult male rat offspring.


Amyloid beta-Peptides/metabolism , Cerebellum/pathology , Physical Conditioning, Animal/physiology , Prenatal Exposure Delayed Effects/prevention & control , Animals , Cerebellum/metabolism , Disease Models, Animal , Female , Humans , Male , Oxidation-Reduction , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar
2.
J Nutr Biochem ; 67: 138-148, 2019 05.
Article En | MEDLINE | ID: mdl-30903960

Caloric restriction (CR) improves health and life span in animal models. Although CR effects in adult life are well described, little is known about effects on offspring when applied during gestation. Pregnancy is a remarkable period of life, alterations in this stage lead to lifelong consequences, some of which, associated to redox unbalance. Furthermore, gestational overweight is a growing issue that can lead to detrimental outcomes. To address this issue, we divided pregnant rats into control (ad libitum food) and CR groups, which received 20% less food than control. Micronutrients consumption was equalized between groups by oral gavage. Cerebellum, prefrontal cortex, hippocampus, and hypothalamus were evaluated on post-natal day (PND) 0, 7, 21, and 60. We observed increased oxidants content on PND0 in all brain structures, except for the cerebellum. Key enzymatic antioxidant defenses showed decreased activity on PND0. Interestingly, on PND60, we observed a positive modulation of most antioxidant enzymes, especially on the prefrontal cortex and hippocampus. Non-enzymatic antioxidant defenses were decreased at birth and increased during development and adult age. Lipid peroxidation was increased at birth on most structures, and the effect was abolished thereafter. In the prefrontal cortex, lipid peroxidation was unaltered at birth and diminished thereafter, while protein oxidation was increased on PND0 and decreased on PND60. Protein oxidation was also decreased in the cerebellum at adult age. Our results shown controlled gestational CR to improve antioxidant defenses and protect offspring's brain from oxidative stress, especially in adulthood, as a result of developmental metabolic programming.


Brain/metabolism , Caloric Restriction , Aging , Animals , Animals, Newborn , Antioxidants/metabolism , Female , Homeostasis , Lipid Peroxidation , Maternal Nutritional Physiological Phenomena , Oxidants/metabolism , Pregnancy , Pregnancy Rate , Rats, Wistar , Weight Gain
3.
Mol Neurobiol ; 56(3): 2022-2038, 2019 Mar.
Article En | MEDLINE | ID: mdl-29982984

Alzheimer's disease (AD) is the main aging-associated neurodegenerative disorder and is characterized by mitochondrial dysfunction, oxidative stress, synaptic failure, and cognitive decline. It has been a challenge to find disease course-modifying treatments. However, several studies demonstrated that regular physical activity and exercise are capable of promoting brain health by improving the cognitive function. Maternal lifestyle, including regular exercise during pregnancy, has also been shown to influence fetal development and disease susceptibility in adulthood through fetal metabolism programming. Here, we investigated the potential neuroprotective role of regular maternal swimming, before and during pregnancy, against amyloid-ß neurotoxicity in the adult offspring. Behavioral and neurochemical analyses were performed 14 days after male offspring received a single, bilateral, intracerebroventricular (icv) injection of amyloid-ß oligomers (AßOs). AßOs-injected rats of the sedentary maternal group exhibited learning and memory deficits, along with reduced synaptophysin, brain-derived neurotrophic factor (BDNF) levels, and alterations of mitochondrial function. Strikingly, the offspring of the sedentary maternal group had AßOs-induced behavioral alterations that were prevented by maternal exercise. This effect was accompanied by preventing the alteration of synaptophysin levels in the offspring of exercised dams. Additionally, offspring of the maternal exercise group exhibited an augmentation of functional mitochondria, as indicated by increases in mitochondrial mass and membrane potential, α-ketoglutarate dehydrogenase, and cytochrome c oxidase enzymes activities. Moreover, maternal exercise during pregnancy induced long-lasting modulation of fusion and fission proteins, Mfn1 and Drp1, respectively. Overall, our data demonstrates a potential protective effect of exercise during pregnancy against AßOs-induced neurotoxicity in the adult offspring brain, by mitigating the neurodegenerative process triggered by Alzheimer-associated AßOs through programming the brain metabolism.


Amyloid beta-Peptides , Brain/metabolism , Cognition Disorders/prevention & control , Physical Conditioning, Animal/physiology , Prenatal Exposure Delayed Effects/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cognition Disorders/chemically induced , Cognition Disorders/metabolism , Female , Male , Mitochondria/metabolism , Pregnancy , Rats , Rats, Wistar , Synaptophysin/metabolism
4.
Int J Dev Neurosci ; 71: 146-155, 2018 Dec.
Article En | MEDLINE | ID: mdl-30232036

Prenatal and early postnatal environments can permanently influence health throughout life. Early overnutrition increases the risk to develop chronic diseases. Conversely, the intake of flavonoids and exercise practice during pregnancy seem to promote long-term benefits to offspring. We hypothesized that benefic interventions during pregnancy could protect against possible postnatal neurochemical alterations caused by overnutrition induced by reduced litter size. Female Wistar rats were divided into four groups: (1) sedentary + vehicle, (2) sedentary + naringenin, (3) swimming exercise + vehicle, and (4) swimming exercise + naringenin. One day after birth, the litter was culled to 8 pups (control) or 3 pups (overfed) per dam, yielding control and overfed subgroups for each maternal group. Serum of 21-days-old pups was collected, also the cerebellum, hippocampus, and hypothalamus were dissected. Litter size reduction increased fat mass and enhanced body weight. Maternal interventions, when isolated, caused reduced glucose serum levels in offspring nurtured in control litters. In the cerebellum, reducing the litter size decreased the activity of thioredoxin reductase, which was prevented by maternal supplementation with naringenin. Hippocampus and hypothalamus have shown altered antioxidant enzymes activities in response to litter size reduction. Interestingly, when maternal exercise and naringenin supplementation were allied, the effect disappeared, suggesting a concurrent effect of the two maternal interventions. In conclusion, exercise or naringenin supplementation during pregnancy can be important interventions for combating the increasing rates of overweight during the infancy and its related neurochemical changes, especially when applied isolated.


Animal Nutritional Physiological Phenomena , Antioxidants/pharmacology , Brain/metabolism , Litter Size/physiology , Physical Conditioning, Animal/physiology , Weaning , Animals , Animals, Newborn , Body Weight/physiology , Estrogen Antagonists/administration & dosage , Female , Flavanones/administration & dosage , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Male , Overnutrition/metabolism , Oxidants/metabolism , Pregnancy , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Swimming/physiology
5.
Int J Dev Neurosci ; 71: 83-93, 2018 Dec.
Article En | MEDLINE | ID: mdl-30172896

Several environmental factors affect child development, such as the intrauterine environment during the embryonic and fetal development and early postnatal environment provided by maternal behavior. Although mechanistic effects of maternal exercise on offspring health improvement are not yet completely understood, the number of reports published demonstrating the positive influence of maternal exercise have increase. Herein, we addressed issues related to early postnatal environment provided by maternal behavior and early developmental physical landmarks, sensorimotor reflexes, and motor movements ontogeny. In brief, adult female rats underwent involuntary swimming exercise, in a moderated intensity, one week before mating and throughout pregnancy, 30 min a day, 5 days a week. Maternal exercised dams have unchanged gestational outcomes compared to sedentary dams. We found no differences concerning the frequency of pup-directed behavior displayed by dams. However, sedentary dams displayed a poorer pattern of maternal care quality during dark cycle than exercised dams. Physical landmarks and sensorimotor reflexes development of female and male littermates did not differ between maternal groups. Developmental motor parameters such as immobility, lateral head movements, head elevation, pivoting, rearing with forelimb support and crawling frequencies did not differ between groups. Pups born to exercised dams presented higher frequency of walking and rearing on the hind legs. These data suggest that female and male littermates of exercised group present a high frequency of exploratory behavior over sedentary littermates. Taken together, the present findings reinforce that maternal exercise throughout pregnancy represent a window of opportunity to improve offspring's postnatal health.


Maternal Behavior , Physical Conditioning, Animal/methods , Pregnancy Outcome , Prenatal Exposure Delayed Effects/prevention & control , Prenatal Exposure Delayed Effects/physiopathology , Swimming/physiology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Exploratory Behavior/physiology , Female , Motor Activity/physiology , Pregnancy , Rats , Rats, Wistar , Reflex/physiology
...